翻訳と辞書
Words near each other
・ Arrowhead (train)
・ Arrowhead Christian Academy
・ Arrowhead Conference
・ Arrowhead Council
・ Arrowhead device
・ Arrowhead dogfish
・ Arrowhead Farms, San Bernardino, California
・ Arrowhead Game Studios
・ Arrowhead High School
・ Arrowhead Lake (Idaho)
・ Arrowhead Lake (Ontario)
・ Arrowhead League
・ Arrowhead Library System
・ Arrowhead Mall
・ Arrowhead Marsh
Arrowhead matrix
・ Arrowhead Mills
・ Arrowhead Monument
・ Arrowhead Mountain
・ Arrowhead Nunatak
・ Arrowhead Pawn Shop
・ Arrowhead piculet
・ Arrowhead Pool
・ Arrowhead Provincial Park
・ Arrowhead Range
・ Arrowhead Recreation Area
・ Arrowhead Refinery Company
・ Arrowhead Region
・ Arrowhead Regional Medical Center
・ Arrowhead Springs, San Bernardino, California


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Arrowhead matrix : ウィキペディア英語版
Arrowhead matrix
In the mathematical field of linear algebra, an arrowhead matrix is a square matrix containing zeros in all entries except for the first row, first column, and main diagonal.
In other words, the matrix has the form
:
A=\begin
\,\!
*&
*&
*&
*&
* \\
\,\!
*&
*&0&0&0 \\
\,\!
*&0&
*&0&0 \\
\,\!
*&0&0&
*&0 \\
\,\!
*&0&0&0&
*
\end.

Any symmetric permutation of the arrowhead matrix, P^T A P, where ''P'' is a permutation matrix, is a
(permuted) arrowhead matrix. Real symmetric arrowhead matrices are used in some algorithms for finding of eigenvalues and eigenvectors.
==Real symmetric arrowhead matrices==

Let ''A'' be a real symmetric (permuted) arrowhead matrix of the form
:
A=\left(& z \\
z^ & \alpha
\end
\right
),

where D=\mathop,d_,\ldots ,d_) is diagonal matrix of order ''n-1'',
z=\begin
\zeta _ & \zeta _ & \cdots & \zeta _
\end^T is a vector and \alpha is a scalar. Let
:
A=V\Lambda V^

be the eigenvalue decomposition of ''A'', where
\Lambda =\mathopv_ & \cdots & v_ \end
is an orthonormal matrix whose columns are the corresponding eigenvectors. The following holds:
* If \zeta_i=0 for some ''i'', then the pair (d_i,e_i), where e_i is the ''i''-th standard basis vector, is an eigenpair of ''A''. Thus, all such rows and columns can be deleted, leaving the matrix with all \zeta_i\neq 0.
* The Cauchy interlacing theorem implies that the sorted eigenvalues of ''A'' interlace the sorted elements d_i: if d_1 \geq d_2\geq \cdots\geq d_ (this can be attained by symmetric permutation of rows and columns without loss of generality), and if \lambda_is are sorted accordingly, then
\lambda_1\geq d_1\geq \lambda_2\geq d_2\geq \cdots \geq \lambda_ \geq d_ \geq \lambda_n
.
* If d_i=d_j, for some i\neq j, the above inequality implies that d_ is an eigenvalue of ''A''. The size of the problem can be reduced by annihilating \zeta_j with a Givens rotation in the (i,j)-plane and proceeding as above.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Arrowhead matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.